

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

01-01-2012 Final 09/01/2009 - 01/12/2012

Acquiring and Exploiting Rich Casual Modes for Robust Decision
Making FA9550-09-1-0627

Tenenbaum, Joshua B.
Kaelbling, Leslie P.
Littman, Michael L.
Wingate, David

MIT, Cambridge, MA
Rutgers University, Piscataway, NJ (none)

Air Force Office of Scientific Research
875 North Randolph Street
Suite 325, Room 3112
Arlington, VA 22203

AFOSR

AFRL-OSR-VA-TR-2012-0735

Distribution A - Approved for Public Release

Our project has made fundamental contributions to the understanding of robust decision making in human beings
and machines through an intensive examination of how to learn rich, causal models of the world and how agents
can use those models to make decisions. We report progress in eight key areas: 1) Significant progress on
building rich models using probabilistic programming. 2) New Bayesian nonparametric models for learning
dynamical systems. 3) A new Bayesian model that learns optimal policies by combining expert demonstrations of
optimal behavior and data gathered by non-optimal exploration. 4) New policy learning methods based on
probabilistic search. 5) A new policy learning algorithm for Bayesian reinforcement learning which is provably
efficient. 6) New algorithms for hierarchical planning. 7) New transfer learning models which use hierarchical
knowledge totransfer abstract properties of domains, such as general notions of consistency, determinism,
generalizability, or clusterability. 8) A new foundation for compositional transfer of policy fragments.

Hierarchical Bayesian models, probabilistic programming, reinforcement learning, transfer learning, policy priors, hierarchical planning.

Acquiring and Exploiting Rich Causal Models for

Robust Decision Making: Final Report

Leslie Pack Kaelbling Joshua B. Tenenbaum Michael L. Littman

1 Summary of Contributions

Our project has made fundamental contributions to the understanding of robust decision making in
human beings and machines through an intensive examination of how to learn rich, causal models
of the world and how agents can use those models to make decisions. Our core assumption is
that both humans and machines can be viewed as boundedly rational agents who are attempting
to maximize their expected utility based on their current state of knowledge subject to their own
computational limitations. This has motivated our key technical approach: we have focused on
probabilistic models to explicitly deal with uncertainty; hierarchical algorithms to leverage
multiple levels of abstraction; and factored models to capture rich structure in complex problems.
We have additionally made significant contributions to probabilistic programming languages
that allow agent designers to quickly specify complex probabilistic models.

Our research is spanning the entire spectrum of learning and decision making, from low-level
dynamical systems modeling to state estimation and optimal control. We are pleased to report
progress in eight key areas:

• Significant progress on building rich models using probabilistic programming. We have de-
veloped new implementation strategies [1], new inference methods [2], and made deep con-
nections between problem formulations [3].

• Bayesian nonparametric models for learning dynamical systems. We have contributed four
new models of dynamical systems: two that use state clustering to quickly estimate parameters
of unknown dynamical models [4], and two that learn factored causal models [5, 6].

• A Bayesian model that learns optimal policies by combining expert demonstrations of optimal
behavior and data gathered by non-optimal exploration [2]. We use nonparametrics to model
the expert’s policy, and fuse that policy information with a model of world dynamics, and
show that performance improves with the addition of expert examples.

• Policy learning methods based on probabilistic search [7]. We have contributed new ideas
about how to search structured policy spaces to help solve complex control problems, such as
those faced by articulated agents in complicated environments.

• A policy learning algorithm for Bayesian reinforcement learning which is provably efficient [4].
Our new BOSS algorithm optimistically mixes sampled models together to construct a policy
which is guaranteed to result in either high reward or more information about an unknown
system, which can be used to further improve performance.

• Hierarchical planning. We have contributed a new algorithm which performs optimistic top-
down planning while only partially committing to specific sequences of low-level actions [8].
This model connects high-level, relational properties of domains with low-level geometric
knowledge, resulting in fast planning in complex, richly structured problems.

• Transfer learning models which use hierarchical knowledge to transfer abstract properties
of domains, such as general notions of consistency, determinism, generalizability, or cluster-
ability. Experience gained in training worlds can be transferred to test worlds, resulting in
accelerated learning and improved control performance. Additional experiments with human
subjects suggest that the model makes qualitatively human-like decisions.

• A foundation for compositional transfer of policy fragments. We have shown how natural
language grammatical formalisms can extract structure at multiple levels of abstractions in
families of domains considered by traditional reinforcement learning formalisms [9].

The following sections provide detail about each of the eight main progress areas.

2 Bayesian Models of Dynamical Systems

An important part of robust decision making is understanding the consequences of decisions. This
requires a model of the world, and when such a model is not given, it must be learnt from experience.
Here, we discuss how to deal with uncertainty and noise in the model building process, while
incorporating prior knowledge.

2.1 The Infinite Latent Events Model

We have developed the Infinite Latent Events Model [5], a nonparametric hierarchical Bayesian
distribution over infinite dimensional Dynamic Bayesian Networks, which can capture rich, factored
structure in temporal data. These DBNs have with binary state representations and noisy-OR-like
transitions. The model operates on “events,” which are discrete factors that work together both to
create new events and to generate observations.

The distribution can be used to learn structure in discrete timeseries data by simultaneously in-
ferring the set of latent events, which events fired at each timestep, how those events are causally
linked, and how the events combine to form observations. Examples of the model in action are
shown in Fig. 1. On the left is a stylized representation of the goal of the model: given the sequence
of images, the model learns that there are four latent events (represented by stylized glyphs), and
learns causal and observation structure. The right shows an example factorization of images.

2

Figure 1: On the left: the ILEM can learn timeseries structure. Given observations (represented
here as images) it infers latent events, actual causes, and prototypical latent observations. On the
right: results on a simple video sequence akin to “space invaders.” Top left: typical observations.
Top right: several of the prototypical observations associated with each event: the top row shows
explosions, the middle row shows some bullet events, and the bottom row shows the alien. Bottom
figure: two chains of causal events inferred by the model. The alien moves back and forth, and a
bullet moves upward after being fired from the ship.

The notion of event is deliberately abstract, meaning the model can be applied in many domains.
We illustrate the model on a sound factorization task, a network topology identification task, and
a video game task. In each domain, the model correctly discovers the latent “events”: in the
sound domain, latent events correspond to unmixed sound signals; in the video game task, they
correspond to sprites, and in the network topology task, they correspond to computers. We have
also applied the ILEM to neural spike train data, in which the events correspond to clusters of
neurons firing.

2.2 Infinite Dynamical Bayesian Networks

While the ILEM is conceptually and practically powerful, it still has limitations. Even the ILEM’s
factorization of the world is not sufficient, for example, to capture structure in the real world such as
objects. Our next model, the Infinite Dynamic Bayesian Network [6], incorporates a more flexible
factorization and richer observation spaces by learning dynamic Bayes nets (DBNs) of arbitrary
cardinality.

We use Bayesian nonparametrics to learn every aspect of a classic DBN:

• How many latent factors should there be?

• How many different values can each factor take on?

• What conditional independencies exist between factors?

• What is the transition distribution between factors?

3

0

1

2

3

4

5

6

7

x 10
5 Training

N
eg

at
iv

e
Lo

g−
lik

el
ih

oo
d

0

1

2

3

4

5

6

7

8

x 10
4 Testing

hmm 2

hmm 3

hmm 5

hmm 7

hmm 10

hmm 15

hmm 20

hmm 30

hmm 40

hmm 50

hmm 100

ihmm

ifhmm

idbn

Figure 2: On the left: an example of the factorization learned by the iDBN. Blue circles repre-
sent latent factors; grey arrows represent connections between these factors and the observation
dimensions (the weather stations). Thick black arrows represent the causal connections between
the latent factors. The strong west-to-east causality is the result of the North American jet stream.

• How do factors combine to form observations?

Inference in this model is challenging. We use a combination of Gibbs sampling, loopy belief
propagation, forward-filtering with backward sampling, and basic MH-based MCMC.

We have applied this model to a variety of datasets, including songbird data, weather data, and a
variety of synthetic datasets. Figure 2 illustrates the kind of models that can be learned: given an
input timeseries representing precipitation levels of different weather stations, the iDBN successfully
recovers a reasonable representation of the causual structure of weather patterns in the US (note
that no geographical information was given to the model). It also performs much better than a
variety of other timeseries models.

3 Beyond Graphical Models: Advances in Probabilistic Program-

ming

Probabilistic models provide a rich and principled framework for learning and inference. But ac-
tually coding up inference algorithms is tedious and error-prone. Probabilistic programming is a
declarative formalism for specifying stochastic, generative processes. Probabilistic programming
languages allow modelers to specify a stochastic process using syntax that resembles modern pro-
gramming languages. This then allows a “probability compiler” to do the heavy lifting of crafting
inference algorithms. Our research has pushed every aspect of these languages.

3.1 Implementing Probabilistic Programming Languages

Our first contribution [1] is a general method of transforming arbitrary programming languages
into probabilistic programming languages with straightforward MCMC inference engines. Ran-

4

True porosity Inferred porosity

Figure 3: On the left: results on modeling rock porosity. On the right: Inference performance for
the HMM (10,000 samples) and LDA model (1,000 samples).

dom choices in the program are “named” with information about their position in an execution
trace; these names are used in conjunction with a database holding values of random variables to
implement MCMC inference in the space of execution traces. We encode naming information us-
ing lightweight source-to-source compilers. Our method enables us to reuse existing infrastructure
(compilers, profilers, etc.) with minimal additional code, implying fast models with low develop-
ment overhead.

The method is simple and fast, and the resulting languages permit a great deal of flexibility in
the specification of distributions by mixing stochastic and deterministic elements with arbitrary
language features (such as objects, inheritance, operator overloading, closures, recursion, libraries,
etc.). Our example implementations have compact code bases and reasonable inference speed.

We illustrated the technique on two languages, one functional and one imperative: Bher, a compiled
version of the Church language which eliminates interpretive overhead of the original MIT-Church
implementation, and Stochastic Matlab, a new open-source language.

Empirically, we have applied the resulting inference engines to a variety of problems. Figure 3
shows some results where we have applied our technique to geophysical modeling, topic modeling
and timeseries modeling.

The main directions for improvement are better mixing and faster inference. Because source-to-
source transformations are often compositional, more transformations could be applied to enhance
performance. These could reduce redundant computation between traces, generate compound
proposals, or implement constraint propagation for initializing conditioners. Future work will in-
vestigate these issues, as well as the possibility of new languages, such as stochastic Python.

3.2 Efficient Inference: Nonstandard Interpretations

Scalable inference is the primary challenge in probabilistic programming. In probabilistic modeling
more generally, inference is efficient when we can take advantage of structure in a distribution. But
how can we find and exploit structure in the distribution represented by a probabilistic program?

5

0 15 30 45
−3

−2.5

−2

−1.5

−1

x 10
9

5 10 15 20 25
−6

−4

−2

0
x 10

7

5 10 15 20 25

−10

−5

0
x 10

4

Input Target

Time (seconds)

L
o
g
 l
ik

e
li
h
o
o
d

PMF

Time

0 1 2
−100

−80

−60

−40

Face
x 1e9 x 1e4 x 1e7

Integer PMFQMR

Figure 4: Top: Frames from the face task. Bottom: results on Face, QMR, PMF and Integer PMF.

Because probabilistic programs are in machine-readable format, a variety of techniques from com-
piler design and program analysis can be used to examine the structure of the distribution repre-
sented by the probabilistic program. We have shown how nonstandard interpretations of probabilis-
tic programs can be used to craft efficient inference algorithms: information about the structure of
a distribution (such as gradients or dependencies) is generated as a monad-like side computation
while executing the program [2]. These interpretations can be easily coded using special-purpose
objects and operator overloading. We implemented two examples of nonstandard interpretations
in two different languages, and use them as building blocks to construct inference algorithms: au-
tomatic differentiation, which enables gradient based methods, and provenance tracking, which
enables efficient construction of global proposals.

Empirically, we have implemented two such interpretations and demonstrated how this information
can be used to find regions of high likelihood quickly, and how it can be used to generate samples
with improved statistical properties versus random-walk style MCMC.

Figure 4 shows some results using a new provenance tracking technique in conjunction with a
factored multiple-try MH algorithm. This method allows MCMC algorithms to construct efficient
global proposals for discrete or continuous variables, and is competitive with hand-coded samplers.
The figure illustrates one simple application, where a mesh is stochastically deformed until it renders
to an image that looks like a target image.

More generally, this work begins to illuminate the close connections between probabilistic inference
and programming language theory. It is likely that other techniques from compiler design and
program analysis could be fruitfully applied to inference problems in probabilistic programs.

6

t=1 t=2 t=3 t=4 t=5 t=T

Figure 5: Example realization of the geology model. On the left: an underwater sedimentary shelf
is created as rivers deposit sediments. Each deposit is approximated by a lobe. On the right: a
sequence of lobes builds up over time, generating a rock volume.

0 2 4 6 8 10
0

2

4

6

8

10
x 10

4

Iterations

K
L

 d
iv

e
rg

e
n

c
e

Sedimentary model

Random search

Annealed PSO

Vanilla GD

ENAC

0 5 10
0

2

4

6

8

10
x 10

4

Iterations

K
L

 d
iv

e
rg

e
n

c
e

Parallelizability

8

64

128

256

Figure 6: (Left) Results on the sedimentary model, comparing four different optimization algo-
rithms. The RL-based ENAC algorithm does the best job. (Right) Parallelization results on the
ENAC algorithm. Performance improves as more cores are added.

3.3 Efficient Inference: Automatic Variational Optimization

Basic MCMC is the state-of-the-art inference method for many probabilistic programming lan-
guages because of its simplicity, compositionality and universality. But MCMC is not a particularly
efficient inference algorithm in general. Can we move beyond it?

Our next contribution [3] is a control theoretic perspective on variational inference in generative
models. This connects variational inference to a temporal credit assignment problem that can
be solved using reinforcement learning. The method is effective for distributions which are not
analytically tractable, including highly structured distributions that arise in probabilistic programs.
In addition, we have shown how to automatically derive mean-field probabilistic programs and
optimize them, and demonstrate that our reinforcement learning perspective improves inference
efficiency over other approaches.

Figure 5 and 6 show the results on a sophisticated model from geophysics. Here, we see that the
RL-based ENAC algorithm outperforms other inference methods.

Because variational inference can be viewed as an RL problem, RL algorithms bring new tools
to inference problems. This is especially appropriate in the context of deep generative models
with complex structure, where RL can help propagate information backwards through the process.
Future work will investigate more RL algorithms and their properties when applied to variational
inference.

7

Figure 7: Left: a wiggle-like motor primitive learned by the snake agent. Right: the learned state
sequence.

4 Planning Under Model Uncertainty

Given a posterior distribution over possible world models, an agent must still decide how to act.
We now turn to our contributions in the area of decision making in a variety of Bayesian contexts.

4.1 Bayesian Policy Search with Policy Priors

We first considered the problem of learning to act in partially observable, continuous-state-and-
action worlds where we have abstract prior knowledge about the structure of the optimal policy in
the form of a distribution over policies [7]. Using ideas from planning-as-inference reductions and
Bayesian unsupervised learning, we cast Markov Chain Monte Carlo as a stochastic, hill-climbing
policy search algorithm. Importantly, this algorithm’s search bias is directly tied to the prior and
its MCMC proposal kernels, which means we can draw on the full Bayesian toolbox to express the
search bias, including nonparametric priors and structured, recursive processes like grammars over
action sequences.

Furthermore, we can reason about uncertainty in the search bias itself by constructing a hierarchi-
cal prior and reasoning about latent variables that determine the abstract structure of the policy.
This yields an adaptive search algorithm—our algorithm learns to learn a structured policy effi-
ciently. We showed how inference over the latent variables in these policy priors enables intra- and
intertask transfer of abstract knowledge. We demonstrate the flexibility of this approach by learn-
ing meta search biases, by constructing a nonparametric finite state controller to model memory,
by discovering motor primitives using a simple grammar over primitive actions, and by combining
all three.

Figure 7 illustrates some results from this line of work. It shows the policy learned by a Bayesian
model of motor primitives when applied to a snake robot in a maze-like world. The models learns
a set of motion primitives that look like the serpentine motions of real snakes – because those are

8

Figure 8: On the left: a simple maze world with shared structure between states. States are fully
observable, but are augmented with information about the presence or absence of walls. On the
right: comparison of the BOSS algorithm with RMAX (a leading competitor) for different values
of a key parameter. BOSS learns more quickly under a wide variety of parameter settings.

the naturally optimal dynamics of motion for this kind of agent.

As planning problems become more complex, we believe that it will become increasingly important
to be able to reliably and flexibly encode abstract prior knowledge about the form of optimal poli-
cies into search algorithms. Encoding such knowledge in a policy prior has allowed us to combine
unsupervised, hierarchical Bayesian techniques with policy search algorithms. This combination
accomplished three things: first, we have shown how we can express abstract knowledge about the
form of a policy using nonparametric, structured, and compositional distributions (in addition, the
policy prior implicitly expresses a preference ordering over policies). Second, we have shown how to
incorporate this abstract prior knowledge into a policy search algorithm based on a reduction from
planning to MCMC-based sampling. Third, we have shown how hierarchical priors can adaptively
direct the search for policies, resulting in accelerated learning. Future work will address computa-
tional issues and push the algorithm to solve more challenging planning problems. We currently
use a generic probabilistic modeling language and inference algorithm; this genericity is a virtue of
our approach, but special purpose engines could accelerate learning.

4.2 BOSS: Planning in Bayesian RL

The ILEM builds a model of a dynamical system, but does not consider planning in it. Conditioned
on data from the system, the ILEM yields samples from a posterior distribution over models. How
can these sampled models be used for planning? We developed a modular approach to reinforcement
learning that uses a Bayesian representation of the uncertainty over models. The approach, BOSS
(Best of Sampled Set) [4], drives exploration by sampling multiple models from the posterior, and
plans by selecting actions optimistically. It extends previous work by providing a rule for deciding
when to resample and how to combine the models.

9

Figure 9: Two model of the generation of expert data. On the left: a model where we assume we
have access to the same planning algorithm used by the expert. On the right: a model where we
either do not have access to a good planner, or that the expert is only planning approximately.

We also provide formal guarantees, using the PAC framework, about our method’s performance:
we show that our algorithm achieves near-optimal reward with high probability with a sample
complexity that is low relative to the speed at which the posterior distribution converges during
learning. Empirically, we demonstrate that BOSS performs quite favorably compared to state-
of-the-art reinforcement-learning approaches and illustrate its flexibility by pairing it with a non-
parametric model that generalizes across states.

Unlike the ILEM model, which learns factorized state spaces, the BOSS model is a nonparametric
state clustering model: states are clustered based on observed attributes, and the clusters are used
to share statistical strength and improve estimates of transition probabilities. For example, the
model is capable of understanding that states with one key feature might all have one kind of
dynamic, while states with another key feature have a different kind of dynamic. Experience in one
state can therefore be generalized to other states, resulting in radical generalization and improved
transition estimate. These improved estimates result in improved control performance.

Fig. 8 provides some representative empirical results. An agent must navigate a maze (left); the
right shows performance (vertical axis) as a function of time (horizontal axis) for different algo-
rithms. BOSS outperforms other methods because of its ability to quickly cluster states together,
even in the presence of uncertainty.

There are many unanswered questions about the BOSS model. While optimistic mixing of models
is practically simple, it does not scale well with the size of the action space, nor the number of
samples used. In addition, it assumes that exact planning is performed on the sampled world
models; a natural extension is to consider approximate planning algorithms.

5 Planning and Model Building with Expert Information

Both the ILEM and BOSS build models based only on an agent’s own interactions with an un-
known world. How can expert demonstrations of (near) optimal behavior improve learning and
control? We have also considered learning in partially observable domains where the agent can
query an expert for just such near-optimal trajectories. This resulted in a nonparametric Bayesian

10

0 2000 4000
−3000

−2000

−1000

0
tiger

C
um

ul
at

iv
e

R
ew

ar
d

0 2000 4000
−200

−100

0

100
shuttle

0 2000 4000
−3000

−2000

−1000

0
gridworld

0 2000 4000
−2

−1.5

−1

−0.5

0
x 10

4 tag

0 2000 4000
−4000

−3000

−2000

−1000

0
rocksample

0 1000 2000 3000
0

1

2

3
hallway

0 2000 4000
−2

−1

0

1
x 10

4 network

0 1000 2000 3000
−8000

−6000

−4000

−2000

0
follow

Iterations of Experience
0 1000 2000 3000

0

50

100

150
beach

0 2000 4000 6000
−10000

−8000

−6000

−4000

−2000

0

iPOMDP

iSC Model−Only

iSC Policy−MAP

iSC Model−Policy Prior

EM

image

Figure 10: Learning curves on several standard POMDP problems. Error bars are 95% confidence
intervals of the mean.

approach that combines model knowledge, which can be learned both from expert information and
independent exploration, with policy knowledge, which can be inferred from expert trajectories
[2]. Our approach additionally biases the agent towards models which are simple and controllable,
which ultimately results in improved policy and model learning.

Combining data from independent exploration and expert trajectories is challenging: data gath-
ered from independent observation provides information directly about the model dynamics and
immediate rewards, whereas the expert demonstrations, by showing outputs of good policies, pro-
vide only indirect information about the underlying model. Similarly, immediate rewards observed
during independent exploration provide indirect information about good policies.

Fig. 9 illustrates our approach. We use a Bayesian model-based RL approach to take advantage
of both forms of data, applying Bayes rule to write a posterior over models M given data D as
p(M |D) ∝ p(D|M)p(M). Different forms of this prior p(M) lead us to three different learning
algorithms: (1) if we know the expert’s planning algorithm, we can sample models from p(M |D),
invoke the planner, and weigh models given how likely it is the planner’s policy generated the
expert’s data; (2) if, instead of a planning algorithm, we have a policy prior, we can similarly
weight world models according how likely it is that probable policies produced the expert’s data;
and (3) we can search directly in the policy space guided by probable models.

Fig. 10 illustrate results on benchmark POMDP tasks. The results show that the addition of expert
data always either improves performance or makes no difference. Additional results (found in the
paper) show that our extra bias towards controllability improves performance even without expert
data.

The idea of policy priors represents a novel contribution to the field of Bayesian RL. While many
researchers have placed priors over world models, far fewer have considered what policy priors

11

are, and how they can be used. We have used them in one particular context, but it is likely
that others are possible. Leveraging or learning general procedural knowledge, as opposed to
declarative knowledge, is one possibility; a more direct application may be controller synthesis or
motor primitive learning. Exploring other uses – especially in cases where exact planning is not
possible – remains an important open problem.

6 Hierarchical Planning

In complicated planning problems – such as those reminiscent of the “real world,” – planning must
occur at multiple levels of abstraction. This includes “task level” planning (for example, a cleaning
agent may decide to dust before it vaccuums) and the motion planning level (what control signals
are needed to actually move the vaccuum around?). We have developed a novel approach [8] to the
integration of task planning and motion planning that has the following two key properties:

• It is aggressively hierarchical. It makes choices and commits to them in a top-down fashion in
an attempt to limit the length of plans that need to be constructed, and thereby exponentially
decrease the amount of search required. Importantly, our approach also limits the need to
project the effect of actions into the far future.

• It uses goal regression, constructing partial symbolic descriptions of desired subgoals and
making queries in a continuous geometric representation of the initial state. It does not
require a complete symbolic representation of the input geometry or of the geometric effect
of the task-level operations.

One key challenge is connecting high-level symbolic descriptors with low-level geometric planning.
We handle this by using geometric suggesters, which are fast, approximate geometric computations
that help the high-level processes make appropriate choices. For example, it is possible to determine
which objects need to be moved out of the way by planning a path for a conservatively grown object
in the 3D workspace rather than in the high-dimensional configuration space of the robot.

We demonstrate the method on a complicated “cleaning task,” which involves moving objects
around in a systematic fashion. A flat symbolic planner would have required significant search to
find the plan; a geometric planner in the full configuration space could never have started. Here,
we solved it by solving 8 small planning problems, the biggest of which required a two-step plan,
and also solved many simple motion plans for suggestions. Finally, we solved detailed robot-motion
planning problems for each primitive action separately. The web site

http://people.csail.mit.edu/tlp/hierarchicalVideos/

contains movies of the robot solving the swap and wash examples, as well as several more complex
problems. In all of these cases, we find a considerable decrease in planning horizon, which comes
with an exponential decrease in the size of the space to be searched.

12

Figure 11: Planning and execution tree for washing and putting away an object. Dashed arrows
are subtask refinements.

Figure 12: Suggestions for swept paths and parking locations.

13

S G

−5 0

A

−5 0

B

−10 −5 0

C

−10 −5 0

D

−20 −10 0

E

−20 −12 −5

F

−10 −5 0

G

−10 −5 0

H

−30 −20 −10

I

−30 −20 −10

J

−15 −10 −5

K
Baseline

Forward

Reverse

S G

S

G

S

G

S

G

S

G

S

G

S

G

G

S

S G G

S

A B

C

D

E

F

G

H

I J K

policy step | policy step

step direction count

direction N | S | E | W

count 1 | 2 | 3 | 4 | 5

The maze base grammar

step

dir. 5

dir.

E

dir.

S

policy

dir. dir.5 5

policy

S 5

policy

E 5

policy

policy stepstep

Learned policy fragments

Value
D

e
n
s
it

y

0

Figure 13: Transfer learning results on a sequence of increasingly complex mazes.

7 Transfer Learning with Hierarchical Bayesian Models

In order for decision making to be robust, an agent must be able to transfer knowledge gained
in one situation to problems faced in another. Here, we discuss two different projects that use
hierarchical Bayesian models to do transfer.

7.1 Compositional Transfer via Nonparametric Grammars

We first investigated a probabilistic framework for incorporating structured inductive biases into
reinforcement learning [9]. These inductive biases arise from the policy priors previously discussed
(ie, probability distributions over optimal policies). Borrowing recent ideas from computational
linguistics and Bayesian nonparametrics, we define several families of policy priors that express
compositional, abstract structure in a domain. Compositionality is expressed using probabilistic
context-free grammars, enabling a compact representation of hierarchically organized sub-tasks.
Useful sequences of sub-tasks can be cached and reused by extending the grammars nonpara-
metrically using Fragment Grammars. We also developed Monte Carlo methods for performing
inference, and show how structured policy priors lead to substantially faster learning in complex
domains compared to methods without inductive biases.

Empirically, we tested our method on a family of increasingly complex maze tasks, shown in Fig-
ure 13. We showed that fragment grammars are capable of capturing abstract, reusable bits of
policy knowledge; this provides improved inductive biases upon entering new tasks. Importantly,

14

this knowledge exists at several levels of abstraction, from low-level information (such as specific
motor primitives) to high-level patterns in the mazes (for example, the fact that most useful prim-
itives occur in sequences of 5 primitive actions).

It is important to emphasize that this is a modeling framework, rather than a particular model: Each
policy prior makes structural assumptions that may be suitable for some domains but not others.
We described several families of policy priors, the most sophisticated of which (fragment grammars)
can capture hierarchically organized, reusable policy fragments. Since optimal policies in many
domains appear amenable to these structural assumptions, we believe that fragment grammars
may provide a powerful inductive bias for learning in such domains.

7.2 Models of Human Modeling and Decision Making

Finally, we have made significant progres on using hierarchical Dirichlet processes to transfer knowl-
edge across worlds in reinforcement-learning domains. We have shown how knowledge learned in
one domain can be leveraged in another, and how transfer at different levels of abstraction can be
accomplished by learning about different parameter settings in a unified model. The knowledge
transferred can result both in fast learning of good models and in fast learning of optimal policies,
depending on the overlap in structure between the previous worlds and the target world.

Our specific technical contribution is a Hierarchical Dirichlet process model. By performing joint
inference over training and test data, our model is able to transfer knowledge at various levels of
abstraction. This results in useful inductive biases about a new world after experiencing training
worlds with varying amounts of consistency. Importantly, our model allows abstract regularities
about the world to be transferred, such as the determinism in the world, or the aggressiveness with
which states should be clustered – we illustrate how agents can learn both to be aggressive and
conservative in their learning. This leads in turn to improved performance vis-a-vis cumulative
reward when compared to other agents.

A few representative empirical results are shown in Fig. 14. In the “Stripe World,” performance of
our algorithm is measured (vertical axis) as a function of time (horizontal axis) for different amounts
of overlap between training worlds and a test world. For the “Corridor World,” performance is of
our transfer method is compared to other algorithms.

Hierarchical Bayes provides a compositional, modular framework in which to think about transfer
at multiple levels, both in terms of specific and abstract knowledge. Future work could extend our
model by using other nonparametric distributions to capture other kinds of inductive bias, or more
structured distributions over richer knowledge representations, to move towards more human-like
generalization in RL.

15

Figure 14: Transfer learning results. See text for details.

References

[1] Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of probabilistic pro-
gramming languages via transformational compilation. In: Artificial Intelligence and Statistics
(AISTATS). (2011)

[2] Wingate, D., Goodman, N., Stuhlmueller, A., Siskind, J.: Nonstandard interpretations of prob-
abilistic programs for efficient inference. In: Neural Information Processing Systems (NIPS).
(2011)

[3] Wingate, D., Weber, T., Kane, J.: A reinforcement learning approach to variational inference
in probabilistic programming. In: (in prep). (2011)

[4] Asmuth, J., Li, L., Littman, M.L., Nouri, A., Wingate, D.: A Bayesian sampling approach
to exploration in reinforcement learning. In: 25th Conference on Uncertainty in Artificial
Intelligence (UAI’09). (2009)

[5] Wingate, D., Goodman, N.D., Roy, D.M., Tenenbaum, J.B.: The infinite latent events model.
In: Uncertainty in Artificial Intelligence (UAI). (2009)

[6] Doshi-Velez, F., Wingate, D., Roy, N., Tenenbaum, J.: Infinite dynamic bayesian networks. In:
International Conference on Machine Learning(ICML). (2011)

[7] Wingate, D., Goodman, N., Roy, D., Kaelbling, L., Tenenbaum, J.: Bayesian policy search
with policy priors. In: International Joint Conference on Artificial Intelligence (IJCAI). Best
poster award. (2011)

[8] Kaelbling, L.P., Lozano-Perez, T.: Hierarchical planning in the now. In: IEEE Conference on
Robotics and Automation Workshop on Mobile Manipulation. (2010)

[9] Wingate, D., Gershman, S., Diuk, C., O’Donnell, T., Tenenbaum, J.: A probabilistic foundation
for compositional policy priors. In: (in prep). (2011)

16

	SF298 FA9550-09-1-0627
	FA9550-09-1-0627 - finalreport

